3.374 \(\int \frac{\sec ^3(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=86 \[ \frac{i \sec (c+d x)}{a d (a+i a \tan (c+d x))^{3/2}}-\frac{i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{2} a^{5/2} d} \]

[Out]

((-I)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*a^(5/2)*d) + (I*Sec[c + d
*x])/(a*d*(a + I*a*Tan[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.143849, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {3501, 3502, 3489, 206} \[ \frac{i \sec (c+d x)}{a d (a+i a \tan (c+d x))^{3/2}}-\frac{i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{2} a^{5/2} d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((-I)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*a^(5/2)*d) + (I*Sec[c + d
*x])/(a*d*(a + I*a*Tan[c + d*x])^(3/2))

Rule 3501

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d^2*
(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1))/(b*f*(m + n - 1)), x] + Dist[(d^2*(m - 2))/(a*(m + n -
1)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2
 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !ILtQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 3502

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(b*f*(m + 2*n)), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rule 3489

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*a)/(b*f), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^3(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\frac{2 i \sec (c+d x)}{a d (a+i a \tan (c+d x))^{3/2}}-\frac{2 \int \frac{\sec (c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx}{a}\\ &=\frac{i \sec (c+d x)}{a d (a+i a \tan (c+d x))^{3/2}}-\frac{\int \frac{\sec (c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx}{2 a^2}\\ &=\frac{i \sec (c+d x)}{a d (a+i a \tan (c+d x))^{3/2}}-\frac{i \operatorname{Subst}\left (\int \frac{1}{2-a x^2} \, dx,x,\frac{\sec (c+d x)}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^2 d}\\ &=-\frac{i \tanh ^{-1}\left (\frac{\sqrt{a} \sec (c+d x)}{\sqrt{2} \sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{2} a^{5/2} d}+\frac{i \sec (c+d x)}{a d (a+i a \tan (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.975878, size = 149, normalized size = 1.73 \[ \frac{i e^{-\frac{1}{2} i (2 c+d x)} \sec ^3(c+d x) \left (-e^{2 i (c+d x)}+e^{2 i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )-1\right ) \left (\cos \left (c+\frac{d x}{2}\right )+i \sin \left (c+\frac{d x}{2}\right )\right )}{2 a^2 d (\tan (c+d x)-i)^2 \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((I/2)*(-1 - E^((2*I)*(c + d*x)) + E^((2*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)
*(c + d*x))]])*Sec[c + d*x]^3*(Cos[c + (d*x)/2] + I*Sin[c + (d*x)/2]))/(a^2*d*E^((I/2)*(2*c + d*x))*(-I + Tan[
c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.282, size = 443, normalized size = 5.2 \begin{align*}{\frac{\sin \left ( dx+c \right ) }{4\,d{a}^{3} \left ( -1+ \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) }\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}} \left ( i\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{2\,\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) \sqrt{2}+i\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{2\,\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) \sin \left ( dx+c \right ) \sqrt{2}-\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{2\,\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{2}-8\,i\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}+8\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}+\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2} \left ( i\cos \left ( dx+c \right ) -i+\sin \left ( dx+c \right ) \right ) }{2\,\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}}} \right ) \sqrt{2}+4\,i\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) -8\, \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

1/4/d/a^3*sin(d*x+c)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ar
ctan(1/2*2^(1/2)*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)*cos(d
*x+c)*2^(1/2)+I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)
/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)*2^(1/2)-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1
/2)*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2*2^(1/2)-8*I*sin(
d*x+c)*cos(d*x+c)^3+8*cos(d*x+c)^4+(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I+sin
(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)+4*I*cos(d*x+c)*sin(d*x+c)-8*cos(d*x+c)^2)/(-
1+cos(d*x+c)^2)

________________________________________________________________________________________

Maxima [B]  time = 1.99748, size = 1115, normalized size = 12.97 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/8*((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((4*I*sqrt(2)*cos(2*d*x + 2*c) +
 4*sqrt(2)*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 4*(sqrt(2)*cos(2*d*x +
 2*c) - I*sqrt(2)*sin(2*d*x + 2*c))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + (2*sqr
t(2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - 2*sqrt(2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x
 + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)) - 1) - I*sqrt(2)*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(1/2*
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*
x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x +
 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + I*sqrt
(2)*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1))*sqrt(a))/(a^3*d)

________________________________________________________________________________________

Fricas [B]  time = 1.99746, size = 761, normalized size = 8.85 \begin{align*} \frac{{\left (-i \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{1}{a^{5} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left ({\left (2 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{1}{a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + i \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{1}{a^{5} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-{\left (2 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{1}{a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{2 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/2*(-I*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(3*I*d*x + 3*I*c)*log((2*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(I*d*
x + I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*
c)) + I*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(3*I*d*x + 3*I*c)*log(-(2*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(I*d
*x + I*c) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I
*c)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(I*e^(2*I*d*x + 2*I*c) + I)*e^(I*d*x + I*c))*e^(-3*I*d*x - 3*
I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{3}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^3/(I*a*tan(d*x + c) + a)^(5/2), x)